
June 19, 2018 – Security in the Age of Disruption

Tools that Enable DevSecOps
Stuart Cianos, CISSP

scianos@alphavida.com
Security Architect @ Medallia

1

Changes/Corrections:
● 2018-06-20: Corrected typo on page 55; term "variable"

corrected to "tag"

Disclaimer
The views and opinions expressed during this conference are those

of the speakers and do not necessarily reflect the views and opinions
held by the Information Systems Security Association (ISSA), the
Silicon Valley ISSA, the San Francisco ISSA or the San Francisco Bay
Area InfraGard Members Alliance (IMA). Neither ISSA, InfraGard, nor
any of its chapters warrants the accuracy, timeliness or completeness
of the information presented. Nothing in this conference should be
construed as professional or legal advice or as creating a
professional-customer or attorney-client relationship. If professional,
legal, or other expert assistance is required, the services of a
competent professional should be sought.

June 19, 2018 – Security in the Age of Disruption

3

Tools that enable
DevSecOps

AKA Moving Fast with Open Source Tools
for Compliance in Sensitive Environments

June 19, 2018 – Security in the Age of Disruption

The Challenge
● Move FAST

● Most teams are using various forms of agile development
practices because of realized productivity gains as well as
changes in technology.
● Rapid release cycles and CI/CD

● Is the code and infrastructure testable? Proveable?
● How to deploy a test environment?

● Infrastructure as Code (IAC)
● Cloud environments are the norm, not the exception

● Multiple providers, APIs
● Virtualization and Containerization

● Docker, Kubernetes, Mesos
● SDN is everywhere - AWS, Azure, GCE, on-premise

June 19, 2018 – Security in the Age of Disruption

5

The Challenge
● Decentralization and Democratization

● Most teams are using various forms of agile development
practices because of realized productivity gains as well as
changes in technology.
● Devops changes the nature of infrastructure

● The days of the "system administrator", "network administrator",
etc. targeting specific platforms or base software (OS)
configuration are over… or numbered depending on the
organization/who you ask.

● Devops = Development + Operations
● Many different areas of development impacting what was

originally the subject area of the sysadmin or network admin.

June 19, 2018 – Security in the Age of Disruption

6

The Challenge
● Infrastructure as Code

● Infrastructure is no longer physical; it is logical and mutable
● Infrastructure as Code (IAC)

● How are changes to the environment being
● Managed?
● Reviewed?
● Applied?
● Logged?

June 19, 2018 – Security in the Age of Disruption

7

The Challenge
● Infrastructure as Code

● Infrastructure is no longer physical; it is logical and mutable
● Infrastructure as Code (IAC)

● How are changes to the environment being
● Managed?

● Where is the central configuration/code repository?

● Reviewed?
● How are code reviews documented?

● Applied?
● How can we detect changes, what *will* be changed?

● Logged?
● Are changes logged? Can we know the differences between the

deployment a year ago vs. today?

June 19, 2018 – Security in the Age of Disruption

8

The Challenge

YES WE CAN!

June 19, 2018 – Security in the Age of Disruption

9

The Tooling
● Infrastructure as Code

● How are changes to the environment being
● Managed?

● Where is the central configuration/code repository?
● GIT, as well as other SCMs

● Reviewed?
● How are code reviews documented?

● Using GIT pull requests, Gerrit, GitLab, GitHub (proprietary), GOGS, etc.

● Applied?
● How can we detect changes, what *will* be changed?

● Terraform, CloudFormation (proprietary, AWS), Ansible, etc.

● Logged?
● Are changes logged? Can we know the differences between the

deployment a year ago vs. today?
● GIT, as well as other SCMs

June 19, 2018 – Security in the Age of Disruption

10

The Tooling
● Additional tooling...

● Building master operating system images
● How are system images built for cloud environments?

● Packer
● Can pull and customize an existing AMI on AWS
● Can use an existing ISO and build a clean image for eventual use

on AWS.
● An important consideration if you need to run your own

clean-room, validated images in sensitive environments (as well as
enclaves like AWS GovCloud)

June 19, 2018 – Security in the Age of Disruption

11

The Tooling
● Additional tooling...

● Deploying infrastructure
● How can infrastructure be defined and stored in an SCM?

● Terraform
● Defines infrastructure as declarative code
● Can deploy on multiple cloud environments and on-premise

environments.
● Supports all the common ones like AWS, Google Compute, Azure…

● Tracks the state of the deployment
● Can determine what has changed between the current desired

state defined by code and what is actually deployed
● Can help track what will be changed for change management processes

● Can provide the necessary data to determine what was deployed
using Terraform and what objects were not

June 19, 2018 – Security in the Age of Disruption

12

The Tooling
● Infrastructure as Code

● How are changes to the environment being
● Managed?

● Where is the central configuration/code repository?
● GIT, as well as other SCMs

● Reviewed?
● How are code reviews documented?

● Using GIT pull requests, Gerrit, GitLab, GitHub (proprietary), etc.

● Applied?
● How can we detect changes, what *will* be changed?

● Terraform, CloudFormation (proprietary, AWS), Ansible, etc.

● Logged?
● Are changes logged? Can we know the differences between the

deployment a year ago vs. today?
● GIT, as well as other SCMs

June 19, 2018 – Security in the Age of Disruption

13

Coverage
● What are we specifically going to cover today?

● GIT
● Gitolite
● Gerrit

● Substitute Gitolite or Gerrit with Github, Gitlab, etc. if desired…
the concepts and workflows are similar regardless of the tooling.

● Pro tip: Gerrit was specifically designed for code review
workflows, if code review is specifically at the top of your list...

● Terraform
● A very quick word about Packer

June 19, 2018 – Security in the Age of Disruption

14

GIT… for compliance!
● What is GIT?

● A version control system, used to track changes over time
to content.

● A distributed version control system.
● Well suited to distributed teams, unstable network connectivity.

Every GIT checkout is a full copy of the SCM repository.
● Performant across a variety of projects and workloads, tested and

proven in the real world.
● GIT is the SCM used for Linux Kernel Development

● Has well-defined workflows covering code review, sign-off,
and/or two-man controls in most any configuration or
environment.

June 19, 2018 – Security in the Age of Disruption

15

GIT… workflows
● How to enforce a workflow

● Bob, Alice, and Cindy work for a company
● Bob is an engineer trying to commit code
● Alice is the reviewer of Bob's code
● Cindy is one of the senior engineers whom manages releases and

enforces policies.

● But how can workflows be enforced on a distributed
VCS/SCM?
● Releases are only built from the repo hosted by the company, not

the copy on Bob's laptop
● By controlling who can actually commit to the various

repositories or branches of a repository, its possible to control,
validate and sign what gets built through a defined process.

June 19, 2018 – Security in the Age of Disruption

16

GIT… workflows
● How can workflows be enforced on a distributed VCS/SCM?

● Releases are only built from the copy of master or release
branch stored on the SCM hosted by the company, not the
distributed copy on Bob's laptop
● When a release is built, it should be built through a documented

and defined build pipeline.
● The build pipeline usually performs some or all of the following

tasks:
● Compiles/validates the build by building various artifacts
● The artifacts are then tested (i.e. unit tests, functional tests)
● If tests succeed, the artifact is made available for deployment.

● In a CD (continuous delivery/deployment) shop, the build pipeline
may even push the release to production.

June 19, 2018 – Security in the Age of Disruption

17

GIT… workflows
● How can workflows be enforced on a distributed VCS/SCM?

● By controlling who can actually commit to the various repositories
or branches of a repository on the business' GIT host, its possible to
control, validate and sign what gets built through a defined process.
● ACME Widget Co. develops an application called "WidgetMaster"

● WidgetMaster's source code is hosted on ACMEs GIT host
● Developers must have their code peer reviewed
● Developers build code in their local GIT repo, in a development

branch
● Developers push code in their development branch to ACME's

GIT host
● The code reviewer examines the code in the development

branch and approves/denies/requests more changes
● and then...

June 19, 2018 – Security in the Age of Disruption

18

GIT… workflows
● How can workflows be enforced on a distributed VCS/SCM?

● By controlling who can actually commit to the various repositories
or branches of a repository on the business' GIT host, its possible to
control, validate and sign what gets built through a defined process.
● ACME Widget Co. develops an application called "WidgetMaster"

● WidgetMaster's source code is hosted on ACMEs GIT host
● The code reviewer examines the code in the development

branch and approves/denies/requests more changes
● and then… depending on the release model...

● The branch can be merged into master by the reviewer, or
● The branch can be merged into master by the developer, after the

reviewer adds their blessing, or
● The reviewer sends a PR to the release manager for inclusion, or
● Software like Gerrit is used to define the process and add an interface

specifically targeting code reviews and management tracking.

June 19, 2018 – Security in the Age of Disruption

19

● How can workflows be enforced on a distributed VCS/SCM?
● Irregardless of the workflow, the concepts are the same

● Access is controlled to repositories as a whole, or perhaps
branches.

● The organization can use a variety of configurations to achieve
the same controls.

● Some of the controls will be defined by the software chosen, but
most are up to the organization to choose.
● Examples:

● Gitolite is well suited to using branches for access control
● Github/Gitlab are also well suited to using branches
● Gerrit doesn't use branching, but uses references instead
● Plain GIT request-pull doesn't use branching

GIT… workflows

June 19, 2018 – Security in the Age of Disruption

20

● How can workflows be enforced on a distributed VCS/SCM?
● Irregardless of the workflow, the concepts are the same

● Access is controlled to repositories as a whole, or perhaps
branches.

● The organization can use a variety of configurations to achieve
the same controls.

● Some of the controls will be defined by the software chosen, but
most are up to the organization to choose.
● Examples:

● Gitolite is well suited to using branches for access control
● Github/Gitlab are also well suited to using branches
● Gerrit doesn't use branching, but uses references instead
● Plain GIT request-pull doesn't use branching

● Pro-tip: Pick the tool that works best for your org and developers!

GIT… workflows

June 19, 2018 – Security in the Age of Disruption

21

● For ACME, the organization wants:
● To build their releases rolling off master
● An easy to maintain and install tool that allows them to enforce a

workflow on top of their plain GIT host without changing the rest of
their SCM infrastructure

● To control access to some branches (like RO to MASTER for most)
● For ACME, the developers want:

● A tool that stays out of their way and lets them use their existing
workflows (change adverse)

● Don't care about the GUI, they use the GIT CLI over SSH exclusively
● ACME has some options…

● Gitolite? Gitlab? Github? …?
● Move developers to Gerrit CR model?

GIT… workflows

June 19, 2018 – Security in the Age of Disruption

22

● For ACME, the organization decided on this workflow:
● Builds are a rolling release from the master branch

● Only Cindy (the release manager) can commit to master branch

● Bob the developer creates a feature branch and makes
changes

● Bob commits changes back to his feature branch and
pushes upstream to a feature branch on ACME's GIT host.

● Alice reviews his change and approves/rejects
● If approved, Alice notes the commit information and sends

a request to Cindy to merge the code
● Cindy merges the code into the Master branch.

GIT… workflows

June 19, 2018 – Security in the Age of Disruption

23

GIT… workflows

June 19, 2018 – Security in the Age of Disruption

24

Bob creates a
feature branch

on his local
checkout

Code
commit

to
feature
branch

Bob pushes
feature branch
to ACME host

Alice
reviews

code

Bob updates
feature branch

Not
Mergeable Cindy

reviews
merge

Reject Accept
Alice sends
request to
Cindy to
merge

Bob sends
CR to
Alice

Cindy
merges
changes

into Master

Accept

● For ACME, the organization decided on Gitolite:
● Lightweight tool that supports the developer's use of GIT

CLI and SSH.
● Doesn't include a GUI or advanced code review facilities

like Gerrit/Gitlab/Github, but controls access to branches
(including master!)

Sample configuration for widgetmaster using groups "cindy_team" (for release
manager team) and "bobs_team" (for development group)
 repo widgetmaster
 RW+ master = @cindy_team # Rel Mgr
 - master = @bobs_team # Devs
 RW+ = @bobs_team # Devs

GIT… workflows

June 19, 2018 – Security in the Age of Disruption

25

● Now that ACME has defined their workflow, how can this
workflow be used to define infrastructure?
● How is infrastructure created?

"Artisanal Infrastructure": Bob clicks on launch button and
hopes that he is correct

Workflow defined...

June 19, 2018 – Security in the Age of Disruption

26

● Now that ACME has defined their workflow, how can this
workflow be used to define infrastructure?
● How is infrastructure created?

"Infrastructure as Code": Bob defines the host as code and
can deploy automatically to any environment

Workflow defined...

June 19, 2018 – Security in the Age of Disruption

27

● Now that ACME has a GIT workflow and is defining their
infrastructure as code, what does this mean?
● If Bob wants to launch infrastructure, it goes through code

review ahead of merge.
● Bob can spin up and test the infrastructure on-the-fly in a

test or staging environment he has access to, without
manual intervention.

● The team that deploys production now has a consistent
infrastructure deployment process based on Terraform.

● Alice has reviewed Bob's code, and the code that Alice
reviewed is the code that Cindy merged into Master.

● The deployment team deploys (only) the approved code.

Workflow defined...

June 19, 2018 – Security in the Age of Disruption

28

● Other important benefits
● The infrastructure code can now be validated (or even

tested!) as part of a CI/CD pipeline
● The infrastructure can be easily re-deployed as part of a

BC/DR process.
● Major Plus!

● The infrastructure can be easily deployed to multiple
environments
● Horizontal scaling, HA sites, and more!

● The infrastructure deployment is:
● Proveable
● Reproducible
● Documented by default as the end state is always defined!

Workflow defined...

June 19, 2018 – Security in the Age of Disruption

29

● Terraform does not force you into any particular organization
of a project… this is very much a highly opinionated guide!!!
● Early decisions can help or hurt your efforts

● Pro-Tip: DRY - Don't Repeat Yourself! Design your project to
enforce re-usability.
● A project structure that uses modules to create reusable "pieces"

or features (Terraform modules) is one recommended way to
achieve this goal.
● A Terraform module is a method for creating components that

can be called from other components
● Terraform also has support for "workspaces" which can be used to

implement re-usability across environments, or a project can be
designed to support it natively.

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

30

● One recommended project structure…
● Two top level entities

● Feature Modules
● A feature module implements functionality that can be deployed

into environments.
● A feature module is called upon by environment modules to

deploy functionality in said environment
● An environment, an environment ….

● Environment Modules
● An environment module defines which feature modules will be

deployed.
● Terraform state is tied to environment modules
● An environment module lives in a specific environment

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

31

● ACME has multiple environments; each environment is an
AWS account for the purposes of this example...
● Production 1 (HA)
● Production 2 (HA)
● Corporate Resources (HA)
● Staging
● Development

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

32

● ACME has multiple environments; each environment is an
AWS account for the purposes of this example...
● Production 1 (HA)

● US-WEST-1
● Availability Zone A
● Availability Zone B

● Production 2 (HA)
● US-EAST-1

● Availability Zone A
● Availability Zone B

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

33

● Corporate Resources (HA)
● US-WEST-1

● Availability Zone A
● Availability Zone B

● Staging
● US-WEST-1

● Availability Zone A

● Development
● US-WEST-1

● Availability Zone A

● ACME has three features they need deployed as part of their
product...
● An initial module which creates dependencies used to store

Terraform state
● A module which configures security properties on every

account ACME manages, creates IAM groups, etc.
● A module which creates a server for bastion access to the

environment.
● The features must be re-usable across all environments.

● The features/functionality is encapsulated in modules
● Modules can (should!) be deployable to any environment (if

designed properly!)

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

34

● Gives us the following project organization as a Terraform
directory structure (w/ environment modules for staging):

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

35

● Important highlights
● Each environment module under an environment defines

the provider(s) and state.
● Each environment module picks the features it deploys by

including the desired feature modules.

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

36

● Important highlights
● Each environment module (except for _early_initialization)

has a remote state configuration. For this example, remote
state is stored in an S3 bucket associated with each
account, and a key associated to each environment and
module:

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

37

● Important highlights
● _early_initialization creates that bucket. This dependency is

the first step of deployment with this methodology/project
structure:

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

38

● Important highlights
● Note the use of variables to make some feature module

re-usable (interpolation on the host's AWS name tag, S3
bucket name)

● We aren't using tools like terragrunt for the purposes of
this discussion
● Terraform remote state configuration is managed by each

environment module
● State corruption or issues in one module won't impact another

● Environment modules pass variables (parameters) to feature
modules

● You may want to consider TF workspaces or Terragrunt re: state
management across environments. There are pros and cons…….

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

39

● Important highlights
● State files may contain secrets… understand how your

code is creating resources.
● For example, if you create a new private key in Terraform

targeting AWS ACS the private key will be stored in state so that
Terraform can convey the key. This may not be desired!
● Define the empty resource and then import the public cert only as

a safer alternative. Only the public certificate will be in state.

● Opportunity for enhancement!
● The bucket created doesn't have encryption turned on by

default.
● Explore the "encrypt=true" option available in Terraform re: S3

buckets and state (out of scope for this presentation)

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

40

● Important highlights
● State files may contain secrets… cont'd…

● This code snippet requires a private key to be stored in an
adjacent file before deploy (probably not desired)

● This code snippet also persists the private key in TF state

resource "aws_iam_server_certificate" "test_cert" {
 name_prefix = "example-cert"
 certificate_body = "${file("self-ca-cert.pem")}"
 private_key = "${file("test-key.pem")}"

 lifecycle {
 create_before_destroy = true
 }
}

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

41

● Important highlights
● State files may contain secrets… cont'd…

● Since AWS does not allow private keys to be conveyed from an
IAM certificate after creation/upload, the only way for Terraform
to convey a key back to the caller after initial run is to maintain it
in state.
● Solution: Import the key securely to AWS, then import the

reference back into Terraform
● New empty resource would appear as follows in code:

resource "aws_iam_server_certificate" "test_cert" {
 certificate_body = ""
 private_key = ""
}

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

42

● Important highlights
● State files may contain secrets… cont'd…

● Now that we have an empty resource… import the certificate to
AWS:

$ aws iam upload-server-certificate --server-certificate-name test1 --certificate-body
file://test.crt --certificate-chain file://ca.crt --private-key file://test.key
{
 "ServerCertificateMetadata": {
 "ServerCertificateName": "test1",
 ...
 }
}

● Tell Terraform about the resource:
$ terraform import module.test_certificate.aws_iam_server_certificate.test_cert test1
module.test_certificate.aws_iam_server_certificate.test_cert: Importing from ID
"test1"...
module.test_certificate.aws_iam_server_certificate.test_cert: Import complete!
 Imported aws_iam_server_certificate (ID: test1)
...

● Now, only the public cert is in state and on the project's path

Organizing Terraform Projects

June 19, 2018 – Security in the Age of Disruption

43

● Time to deploy to staging!
● A fresh AWS account with no configuration except the

initial user I am presenting with...

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

44

● Time to deploy to staging!
● The deployment plan

● There are dependencies! Don't forget to document how to spin
up environments given the configuration…

● The environment module dependency order for this deployment
to staging environment:
● _early_initialization: Initialize the state bucket (one time only)
● account-security: Set up IAM permissions and groups
● bastion: Spin up a bastion host

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

45

● Time to deploy to staging!
● Step 1: _early_initialization

● Since this is the first time
spinning up the environment,
a TF state bucket must be
created.

● This is the only step where state
is not remotely stored.

● This single state file should be
committed back to repo so that
subsequent deployments are
aware.

● All further state is remote.

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

46

● Time to deploy to staging!
● Step 1: _early_initialization
● Notice how the plan told us exactly what changes are going to be made,

and what the differences between the existing state and new state will
be.

● Apply the plan:

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

47

● Time to deploy to staging!
● Step 1: _early_initialization
● The plan has been applied, and changes were made:

● Re-running terraform plan or apply shows that its aware of the bucket
on future deployments:

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

48

● Time to deploy to staging!
● Step 2: account_security
● Apply the changes (note - skipping plan for presentation for brevity)

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

49

● Time to deploy to staging!
● Step 2: account_security
● Note that the account is now compliant with the desired security

properties specified in the Terraform code:

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

50

● Time to deploy to staging!
● Step 3: bastion
● POP-QUIZ QUESTION: Can you determine what the code below in the

bastion environment module is going to do?

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

51

● Time to deploy to staging!
● Step 3: bastion
● ANSWER: It is deploying a feature module called

"ec2-bastion-jumphost".

● QUESTION: What is ec2-bastion-jumphost going to do? Let's take a look
at the module ec2-bastion-jumphost's definition as shown by the code.

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

52

● Time to deploy to staging!
● Step 3: bastion
● QUESTION: What is ec2-bastion-jumphost going to do?

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

53

Require a variable called "environment code"

Figure out the latest Ubuntu Xenial image
from upstream vendor Canonical (the
organization that curates the Ubuntu Linux
distribution)

Deploy an AWS EC2 instance called
"bastion-${var.environment_code}" where
${var.environment_code} will interpolate to
the variable environment_code passed in.

Provide an output of the AMI used, storable
and queryable via Terraform state.

● Time to deploy to staging!
● Step 3: bastion
● Deploy it!

● The AMI is found
based on the
data resource in the
feature module

● The EC2 instance is
deployed based
on the resource
defined in the
feature module.

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

54

● Time to deploy to staging!
● Step 3: bastion
● Oops!
● The tag

"name"
should have been
set to: bastion-
staging-us-west-1a
● Update the

tag and try
re-applying.

● Note that TF
tracks and
applies change.

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

55

● Deployment is complete!
● This can be repeated across multiple environments, and the

result is well defined and determinate.
● Allows infrastructure changes to be rolled forward and back

based on code commits/releases from an SCM.
● Allows infrastructure to be change managed and tracked in

SCM, just like any other code.
● Also allows easy teardown of AWS resources, i.e. terraform

destroy…
● You can query and introspect the Terraform state to

determine which objects in AWS were created outside of
the formal project structure.

Terraform in Action

June 19, 2018 – Security in the Age of Disruption

56

● Packer allows creation and/or customization of virtual
machine images
● In other words, it allows custom AMIs to be built in the

context of the AWS environment
● But supports many virtualization hosts, which is useful

● Can use a local VM host to build images for the cloud based on
validated ISOs from upstream vendors
● Might be important if you are operating in sensitive

environments that don't let you access public images
● Do you trust the images in the marketplace?

● From the same company as Terraform, shares a lot of similar
configuration principles.

● Pro-tip: Make your life easy by adapting pre-existing recipes via
projects like Boxcutter.

Quick Words on Packer

June 19, 2018 – Security in the Age of Disruption

57

● Using Packer, tools like cloud-init and other requirements can
be pre-configured as desired.
● Default security configurations in the OS?
● Ability to burn specific AMIs for different functionality or

roles if desired (or not):
● with pre-loaded components "burned" into the AMI (vs. runtime

configuration at instantiation); or
● by using scripts to configure during instantiation, which allows

EC2 metadata and APIs to be queried and change configuration of
image at point of deployment.
● Pros and cons to both techniques; feel free to use one, the other,

or both methodologies as needed.

Quick Words on Packer

June 19, 2018 – Security in the Age of Disruption

58

● Sample stanza showing variables in a packer configuration
(from a heavily customized fork of the Boxcutter Ubuntu
project):

Quick Words on Packer

June 19, 2018 – Security in the Age of Disruption

59

● In this example, note
that we pass an
environment variable
ROLE during packer
execution, passed
upstream by the caller

● This is used by various
scripts to support
multiple custom-
izations from a single
reusable codebase.

Quick Words on Packer

June 19, 2018 – Security in the Age of Disruption

60

● Depending on whether the source is a bootable ISO or an
existing machine image (AMI in this case), Packer will:
● For an ISO image

● Spin up a VM using your VM host of choice (i.e. Virtualbox,
VMWare, etc.)

● For Linux, use preseeding or kickstart to perform headless/auto
install using specified configuration.

● Perform customization/personalization steps
● Halt and export the VM image for import to AWS.

● For an existing AMI
● Spin up EC2 instance using specified upstream AMI
● Perform customization/personalization steps
● Halt and dump the EC2 machine to an AMI image

Quick Words on Packer

June 19, 2018 – Security in the Age of Disruption

61

● Visual Overview of Packer's inputs and outputs:

Quick Words on Packer

June 19, 2018 – Security in the Age of Disruption

62

Machine Image

1. Provide definition/config 2. Packer spins up VM+instrumentation 3. The operating system is installed in VM

4. Boot into the new VM once installed

5. Packer customizes the new VM

6. Packer dumps/exports to new image

● GIT repository access controls are used to enforce a workflow
that mandates code reviews and allows deployments to occur
from the certified/approved release branches.

● Terraform is used to deploy infrastructure based on code from
the certified/approved release branches
● Terraform also provides us with some useful change

management features, like showing what's going to happen
before it does.

● Packer is used to build machine images based on code
from the certified/approved release branches.

● It is now possible to demonstrate the pipeline for
compliance purposes.

Results...

June 19, 2018 – Security in the Age of Disruption

63

● Some useful compliance attributes:
● Infrastructure assets are now tracked across their lifecycle

via Terraform state.
● Infrastructure assets are directly related to the definition(s)

that live in the SCM and Terraform state.
● Machine images can be signed, validated, and have a

known footprint.
● Configuration is consistent across builds and does not rely on

manual intervention.

● If infrastructure is designed to be immutable, upgrades
become a matter of generating and deploying new images.
Eliminates risk of drift.

● Infrastructure can be (more?) easily re-deployed for BC/DR

Results...

June 19, 2018 – Security in the Age of Disruption

64

Questions...

June 19, 2018 – Security in the Age of Disruption

65

● Q&A

● Resource list:
● Packer: https://www.packer.io/
● Terraform: https://www.terraform.io/
● GIT: https://git-scm.com/

● Noted GIT tools:
● Gitolite: http://gitolite.com/gitolite/index.html
● Gerrit: https://www.gerritcodereview.com/
● GOGS: https://www.gogs.io/
● Gitlab: https://about.gitlab.com/
● Github: https://www.github.com/ (proprietary/closed source)

June 19, 2018 – Security in the Age of Disruption

66

Disclaimer

The views and opinions expressed during this conference are those of the speakers and do not necessarily reflect the views and
opinions held by the Information Systems Security Association (ISSA), the Silicon Valley ISSA, the San Francisco ISSA or the San
Francisco Bay Area InfraGard Members Alliance (IMA). Neither ISSA, InfraGard, nor any of its chapters warrants the accuracy,
timeliness or completeness of the information presented. Nothing in this conference should be construed as professional or legal
advice or as creating a professional-customer or attorney-client relationship. If professional, legal, or other expert assistance is
required, the services of a competent professional should be sought.

Thank you

Stuart Cianos, CISSP
scianos@alphavida.com

Security Architect @ Medallia

